If angles A and B satisfy the system of equations
2tanA+tanB=4
tanA−3tanB=−217
Then tan(2A+B) equals....
Explanation
Recall the trigonometric concepts for angle addition
tan(x+y)=1−tanx⋅tanytanx+tany
tan(2x)=1−tan2x2tanx
Solve the system of equations
Get the first equation by transforming to find tanB.
2tanA+tanB=4→tanB=4−2tanA
Then substitute into the second equation
tanA−3tanB=−217
tanA−3(4−2tanA)=−217
tanA−12+6tanA=−217
7tanA=−217+12
7tanA=27
tanA=21
Therefore, the value of tanB=4−2tanA=4−2(21)=3.
Determine the value of tan 2A
tan(2A)=1−tan2A2tanA
tan(2A)=1−(21)22(21)
tan(2A)=1−411=34
Determine the value of tan(2A + B)
tan(2A+B)=1−tan2A⋅tanBtan2A+tanB
tan(2A+B)=1−34(3)34+3
tan(2A+B)=1−4313
tan(2A+B)=−3313
tan(2A+B)=−913
Therefore, the value of tan(2A+B) is −913.