If [tanx11tanx][cos2xsinxcosx]=[ab]21 where b=2a, then 0≤x≤π that satisfies is....
- 6π
- 12π
- 65π
- 125π
Explanation
Given the matrices
[tanx11tanx][cos2xsinxcosx]=[ab]
Multiply the matrices
This is matrix multiplication, so
[ab]=[tanx⋅cos2x+sinx⋅cosxcos2x+tanx⋅sinxcosx]
Change tanx=cosxsinx, to
[ab]=[(cosxsinx)⋅cos2x+sinx⋅cosxcos2x+(cosxsinx)⋅sinxcosx]
Simplify to
[ab]=[sinx⋅cosx+sinx⋅cosxcos2x+sin2x]
[ab]=[2sinx⋅cosxsin2x+cos2x]
We know that the value 2sinx⋅cosx=sin2x and the value sin2x+cos2x=1, then
[ab]=[sin2x1]
Therefore, the value a=sin2x and b=1.
Substitute into the given condition
Substitute b=1 into b=2a to get a=21.
Then, substitute a=21 into a=sin2x to get sin2x=21.
The values of 2x that satisfy are
2x1=6π+k⋅2πor2x2=65π+k⋅2π
x1=12π+kπorx2=125π+kπ
The values of x that satisfy are 12π or 125π.
Therefore, the correct statements are the second and fourth.