Kode sumberVideo

Command Palette

Search for a command to run...

Fungsi Komposisi dan Fungsi Invers

Fungsi dan Bukan Fungsi

Relasi Antar Himpunan

Dalam matematika, relasi dari himpunan AA ke himpunan BB adalah suatu aturan yang menghubungkan anggota himpunan AA dengan anggota himpunan BB. Pemasangan ini bisa dalam bentuk apapun.

Contoh:

Relasi "kurang dari" antara A={1,2,3}A = \{1, 2, 3\} dan B={1,2,3,4}B = \{1, 2, 3, 4\} menghasilkan pasangan (1,2),(1,3),(1,4),(2,3),(2,4),(3,4)(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4).

Penjelasan:

Kita mencari semua pasangan (a,b)(a, b) dengan aAa \in A dan bBb \in B dimana a<ba < b.

  • Untuk a=1a=1 -> 1<21 < 2, 1<31 < 3, 1<41 < 4. Pasangan: (1,2),(1,3),(1,4)(1, 2), (1, 3), (1, 4).
  • Untuk a=2a=2 -> 2<32 < 3, 2<42 < 4. Pasangan: (2,3),(2,4)(2, 3), (2, 4).
  • Untuk a=3a=3 -> 3<43 < 4. Pasangan: (3,4)(3, 4).

Gabungan semua pasangan ini adalah {(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)}\{(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)\}.

Fungsi Sebagai Relasi Khusus

Fungsi (atau pemetaan) ff dari himpunan AA ke himpunan BB, ditulis f:ABf: A \to B, adalah relasi khusus yang memenuhi dua syarat:

  1. Setiap elemen xAx \in A harus memiliki pasangan yBy \in B.

    xA,yB sehingga (x,y)f\forall x \in A, \exists y \in B \text{ sehingga } (x, y) \in f
  2. Setiap elemen xAx \in A memiliki tepat satu pasangan yBy \in B.

    Jika (x,y1)f dan (x,y2)f, maka y1=y2\text{Jika } (x, y_1) \in f \text{ dan } (x, y_2) \in f, \text{ maka } y_1 = y_2

Artinya, setiap anggota domain harus terhubung, dan tidak boleh memiliki lebih dari satu hubungan.

Contoh Diagram Panah

Berikut adalah contoh visualisasi relasi menggunakan diagram panah untuk membedakan mana yang fungsi dan mana yang bukan.

Relasi Bukan Fungsi

Satu ke Banyak
Elemen b memiliki lebih dari satu pasangan (m dan n).
Arrow diagram of relation between setsXYabcmn
Ada Domain Tanpa Pasangan
Elemen c tidak memiliki pasangan di kodomain.
Arrow diagram of relation between setsXYabcmno

Relasi yang Merupakan Fungsi

Tepat Satu Pasangan
Setiap elemen domain (p, q, r) memiliki tepat satu pasangan.
Arrow diagram of relation between setsXYpqrxyz