The value of
∫12(4x2−x+5)dx
is ....
Explanation
To solve the definite integral ∫12(4x2−x+5)dx, we integrate first
Integrating
∫12(4x2−x+5)dx=[34x3−21x2+5x]12
Substituting Upper and Lower Bounds
Substitute x=2 and x=1
=(34(2)3−21(2)2+5(2))−(34(1)3−21(1)2+5(1))
=(34⋅8−21⋅4+10)−(34−21+5)
=(332−2+10)−(34−21+5)
=(332+8)−(34−21+5)
Simplifying
=332+8−34+21−5
=332−4+8−5+21
=328+3+21
=656+618+63
=656+18+3=677
Therefore, the value of ∫12(4x2−x+5)dx=677