The function f(x)=3sinx+3cosx defined on the interval (0,2π) reaches its maximum value at x=....
Explanation
Recall the derivative concepts for trigonometric functions
y=a⋅sinx→y′=a⋅cosx
y=a⋅cosx→y′=−a⋅sinx
Finding the stationary points
The condition for maximum value is when f′(x)=0.
f′(x)=0
3cosx−3sinx=0
3cosx=3sinx
cosxsinx=1
tanx=1
Then the values of x that satisfy tanx=1 are x=4π and x=45π.
Testing maximum and minimum values
Check first which function has maximum and minimum values.
For the value x=4π
x=4π→f(4π)=3sin4π+3cos4π
x=4π→f(4π)=3(212)+3(212)
x=4π→f(4π)=32 (max)
For the value x=45π
x=45π→f(45π)=3sin45π+3cos45π
x=45π→f(45π)=3(−212)+3(−212)
x=45π→f(45π)=−32 (min)
Therefore, the maximum value is reached when x=4π.