The value of limx→−y−2y2x2−y2⋅(1−tanxtany)tanx+tany is....
Explanation
Remember the concept that
x→alimn(x−a)tanm(x−a)=nm
Then
x→−ylim−2y2x2−y2⋅(1−tanxtany)tanx+tany
=x→−ylim−2y2x2−y21⋅1−tanxtanytanx+tany
=x→−ylimx2−y2−2y2⋅tan(x+y)
=x→−ylim(x−y)(x+y)−2y2⋅tan(x+y)
=x→−ylimx−y−2y2⋅x+ytan(x+y)
Because x→−y then x+y→0, so limx+y→0x+ytan(x+y)=1. Then
=x→−ylimx−y−2y2
=−y−y−2y2
=−2y−2y2
=y