The value of limx→3x2−x−6(x+6)tan(2x−6) is....
Explanation
Perform factorization on the denominator
x→3limx2−x−6(x+6)tan(2x−6)
=x→3lim(x+2)(x−3)(x+6)tan2(x−3)
=x→3limx+2x+6⋅x−3tan2(x−3)
Because x→3, then x−3→0. Using limit property limu→0utanau=a
=3+23+6⋅12
=59⋅2
=518