Source codeVideos
Exponents and Logarithms

Exponent Properties

Nabil Akbarazzima Fatih

Mathematics

Table of Exponent Values for Base 2

2n2^nExponentiation Result
212^12
222^24
232^38
242^416
252^532
262^664
272^7128
282^8256
292^9512
2102^{10}1024

Exponent Properties

There are several exponent properties that need to be understood:

  1. aman=am+na^m \cdot a^n = a^{m+n}, where a0,m,na \neq 0, m, n are integers

    This means multiplying two exponents with the same base results in a new exponent with the sum of the powers.

  2. aman=amn\frac{a^m}{a^n} = a^{m-n}, where a0,m,na \neq 0, m, n are integers

    Dividing two exponents with the same base results in a new exponent with the difference of the powers.

  3. (am)n=am×n(a^m)^n = a^{m \times n}, where a0,m,na \neq 0, m, n are integers

    An exponent of an exponent means multiplying the power by the outer power.

  4. (ab)m=am×bm(ab)^m = a^m \times b^m, where a,b0a, b \neq 0 , and mm is an integer

    The exponent of a multiplication equals the multiplication of each base raised to the same power.

  5. (ab)m=ambm\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, where b0b \neq 0 , and mm is an integer

    The exponent of a division equals the division of each base raised to the same power.

  6. (amn)p(apn)=(a)m+pn(a^\frac{m}{n})^p \cdot (a^\frac{p}{n}) = (a)^\frac{m+p}{n}

    , where a>0a > 0, mn\frac{m}{n} and pn\frac{p}{n} are rational numbers with n0n \neq 0

  7. (amn)(apq)=(a)mq+pnnq(a^\frac{m}{n}) \cdot (a^\frac{p}{q}) = (a)^\frac{m \cdot q + p \cdot n}{n \cdot q}

    , where a>0a > 0, mn\frac{m}{n} and pq\frac{p}{q} are rational numbers with n,q0n, q \neq 0

Importance of Conditions for Each Property

Each exponent property has specific conditions:

  • In properties 1, 2, and 3, the value a0a \neq 0 because exponents with base 0 are only defined for positive powers.
  • In property 4, the values a,b0a, b \neq 0 to ensure the exponent is defined.
  • In property 5, the value b0b \neq 0 to avoid division by zero.
  • In properties 6 and 7, the value a>0a > 0 because rational exponents on negative numbers can result in complex numbers.

Understanding these exponent properties is very important as a foundation for advanced mathematics learning, such as logarithms, exponential functions, and calculus.

Worked Examples

  1. Simplify 25×2322\frac{2^5 \times 2^3}{2^2}

    25×2322=25+322=2822=282=26=64\frac{2^5 \times 2^3}{2^2} = \frac{2^{5+3}}{2^2} = \frac{2^8}{2^2} = 2^{8-2} = 2^6 = 64
  2. Simplify 22232^2 \cdot 2^3

    2223=22+3=25=322^2 \cdot 2^3 = 2^{2+3} = 2^5 = 32
  3. Simplify 25222^5 \cdot 2^2

    2522=25+2=27=1282^5 \cdot 2^2 = 2^{5+2} = 2^7 = 128
  4. Simplify 23272^3 \cdot 2^7

    2327=23+7=210=10242^3 \cdot 2^7 = 2^{3+7} = 2^{10} = 1024
  5. Simplify 2826\frac{2^8}{2^6}

    2826=286=22=4\frac{2^8}{2^6} = 2^{8-6} = 2^2 = 4
  6. Simplify 21023\frac{2^{10}}{2^3}

    21023=2103=27=128\frac{2^{10}}{2^3} = 2^{10-3} = 2^7 = 128
  7. Simplify 2624\frac{2^6}{2^4}

    2624=264=22=4\frac{2^6}{2^4} = 2^{6-4} = 2^2 = 4
  8. Simplify (23)3(2^3)^3

    (23)3=23×3=29=512(2^3)^3 = 2^{3 \times 3} = 2^9 = 512
  9. Simplify (24)2(2^4)^2

    (24)2=24×2=28=256(2^4)^2 = 2^{4 \times 2} = 2^8 = 256
  10. Simplify (22)5(2^2)^5

    (22)5=22×5=210=1024(2^2)^5 = 2^{2 \times 5} = 2^{10} = 1024