Source codeVideos

Nabil Akbarazzima Fatih

Mathematics

Exponential Properties and Their Proofs

We will discuss the properties of exponents and their proofs. These properties are essential to understand as they form the foundation for solving various problems related to exponents and logarithms.

Property 1

aman=am+na^m \cdot a^n = a^{m+n}

For every a0a \neq 0 and m,nm, n real numbers.

Property 2

aman=amn\frac{a^m}{a^n} = a^{m-n}

For every a0a \neq 0 and m,nm, n real numbers.

Property 3

(am)n=amn(a^m)^n = a^{m \cdot n}

For every a0a \neq 0 and m,nm, n real numbers.

Property 4

(ab)m=ambm(ab)^m = a^m \cdot b^m

For every a,b0a, b \neq 0 and mm integer.

Proof:

Method 1:

(ab)m=ab×ab×ab××abm factors(ab)^m = \underbrace{ab \times ab \times ab \times \ldots \times ab}_{m\text{ factors}}
(ab)m=a×a×a××am factors×b×b×b××bm factors(ab)^m = \underbrace{a \times a \times a \times \ldots \times a}_{m\text{ factors}} \times \underbrace{b \times b \times b \times \ldots \times b}_{m\text{ factors}}
(ab)m=am×bm(ab)^m = a^m \times b^m

Method 2:

We can take several examples with specific values of m,am, a and bb to observe the pattern that forms. For example, with m=2,a=3,b=4m=2, a=3, b=4:

(34)2=122=144(3 \cdot 4)^2 = 12^2 = 144
3242=916=1443^2 \cdot 4^2 = 9 \cdot 16 = 144

Property 5

(ab)m=ambm\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}

For every a0,b0a \neq 0, b \neq 0 and mm integer.

Proof:

(ab)m=ab×ab×ab××abm factors\left(\frac{a}{b}\right)^m = \underbrace{\frac{a}{b} \times \frac{a}{b} \times \frac{a}{b} \times \ldots \times \frac{a}{b}}_{m\text{ factors}}
(ab)m=a×a×a××am factorsb×b×b××bm factors\left(\frac{a}{b}\right)^m = \frac{\underbrace{a \times a \times a \times \ldots \times a}_{m\text{ factors}}}{\underbrace{b \times b \times b \times \ldots \times b}_{m\text{ factors}}}
(ab)m=ambm\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}

Property 6

(amn)(apn)=am+pn(a^{\frac{m}{n}})(a^{\frac{p}{n}}) = a^{\frac{m+p}{n}}

For every a>0a > 0, mn\frac{m}{n} and pn\frac{p}{n} rational numbers with n0n \neq 0.

Proof:

Using Property 1, we obtain:

(amn)(apn)=amn+pn(a^{\frac{m}{n}})(a^{\frac{p}{n}}) = a^{\frac{m}{n} + \frac{p}{n}}
(amn)(apn)=am+pn(a^{\frac{m}{n}})(a^{\frac{p}{n}}) = a^{\frac{m+p}{n}}

Property 7

(amn)(apq)=amq+pnnq(a^{\frac{m}{n}})(a^{\frac{p}{q}}) = a^{\frac{mq + pn}{nq}}

For every a>0a > 0, mn\frac{m}{n} and pq\frac{p}{q} rational numbers with n,q0n, q \neq 0.

Proof:

Using Property 1, we need to equalize the denominators of the exponents:

(amn)(apq)=amn+pq(a^{\frac{m}{n}})(a^{\frac{p}{q}}) = a^{\frac{m}{n} + \frac{p}{q}}
(amn)(apq)=amqnq+pnnq(a^{\frac{m}{n}})(a^{\frac{p}{q}}) = a^{\frac{mq}{nq} + \frac{pn}{nq}}
(amn)(apq)=amq+pnnq(a^{\frac{m}{n}})(a^{\frac{p}{q}}) = a^{\frac{mq + pn}{nq}}

Example Problems

Determining Values and Proofs

  1. (34)2=3p(3^4)^2 = 3^p

    Solution: Using Property 3, (am)n=amn(a^m)^n = a^{m \cdot n}

    (34)2=342=38(3^4)^2 = 3^{4 \cdot 2} = 3^8
    p=8p = 8
  2. b4b5=b9b^4 \cdot b^5 = b^9

    Solution: Using Property 1, aman=am+na^m \cdot a^n = a^{m+n}

    b4b5=b4+5=b9b^4 \cdot b^5 = b^{4+5} = b^9
    Therefore, the equation is proven true.\text{Therefore, the equation is proven true.}
  3. (3π)p=27π3(3\pi)^p = 27\pi^3

    Solution: Converting 27π327\pi^3 to 33π33^3 \cdot \pi^3

    27π3=33π3=(3π)327\pi^3 = 3^3 \cdot \pi^3 = (3\pi)^3
    p=3p = 3

Simplifying Expressions

  1. (24×3623×32)3\left(\frac{2^4 \times 3^6}{2^3 \times 3^2}\right)^3
    (24×3623×32)3=(243×362)3\left(\frac{2^4 \times 3^6}{2^3 \times 3^2}\right)^3 = \left(2^{4-3} \times 3^{6-2}\right)^3
    =(21×34)3= \left(2^1 \times 3^4\right)^3
    =213×343= 2^{1 \cdot 3} \times 3^{4 \cdot 3}
    =23×312= 2^3 \times 3^{12}
  2. (3u3v5)(9u4v)(3u^3v^5)(9u^4v)
    (3u3v5)(9u4v)=39u3+4v5+1(3u^3v^5)(9u^4v) = 3 \cdot 9 \cdot u^{3+4} \cdot v^{5+1}
    =3132u7v6= 3^1 \cdot 3^2 \cdot u^7 \cdot v^6
    =31+2u7v6= 3^{1+2} \cdot u^7 \cdot v^6
    =33u7v6= 3^3 \cdot u^7 \cdot v^6
    =27u7v6= 27u^7v^6
  3. (n1r45n6r4)2\left(\frac{n^{-1}r^4}{5n^{-6}r^{-4}}\right)^2
    (n1r45n6r4)2=(n1r451n6r4)2\left(\frac{n^{-1}r^4}{5n^{-6}r^{-4}}\right)^2 = \left(\frac{n^{-1}r^4}{5} \cdot \frac{1}{n^{-6}r^{-4}}\right)^2
    =(n1r45n6r4)2= \left(\frac{n^{-1}r^4}{5} \cdot n^6r^4\right)^2
    =(n1+6r4+45)2= \left(\frac{n^{-1+6}r^{4+4}}{5}\right)^2
    =(n5r85)2= \left(\frac{n^5r^8}{5}\right)^2
    =n10r1625= \frac{n^{10}r^{16}}{25}