Source codeVideos

Command Palette

Search for a command to run...

Complex Number

Principal Argument of Complex Numbers

Understanding the Principal Argument

The argument θ\theta of a complex number z=x+iyz = x + iy is the angle formed by the vector zz with the positive real axis.

However, there's an important point: the argument is not a single value!

If θ\theta is an argument of zz, then θ+2πk\theta + 2\pi k (where kk is an integer: 0,±1,±2,0, \pm 1, \pm 2, \ldots) is also an argument of zz, because adding multiples of 360360^\circ or 2π2\pi radians results in the same angle on the complex plane.

Example:

The angles 4545^\circ, 405405^\circ (45+36045^\circ + 360^\circ), and 315-315^\circ (4536045^\circ - 360^\circ) all indicate the same direction.

Because there are infinitely many arguments for a single complex number, we often need a unique standard value. This value is called the Principal Argument.

Definition of Principal Argument

The Principal Argument of a complex number z=r(cosθ+isinθ)z = r(\cos \theta + i\sin \theta) is the unique value of the argument θ\theta that satisfies a specific range.

Principal Argument (denoted Arg(z)\text{Arg}(z)) is defined as the argument θ\theta that satisfies:

0θ<2πor0θ<3600 \leq \theta < 2\pi \quad \text{or} \quad 0^\circ \leq \theta < 360^\circ

Note: Other definitions sometimes use the range (π,π](-\pi, \pi] or (180,180](-180^\circ, 180^\circ]. It's important to always check the definition being used in a specific context.

Determining the Principal Argument

Determining the Principal Argument is the same as finding the regular argument, but we need to ensure the final result is within the range [0,2π)[0, 2\pi) or [0,360)[0^\circ, 360^\circ).

Finding the Principal Argument

  1. Find the Principal Argument of z=1+iz = 1 + i

    The point (1,1)(1, 1) is in Quadrant II.

    tanθ=yx=11=1\tan \theta = \frac{y}{x} = \frac{1}{1} = 1
    θ=arctan(1)=45\theta = \arctan(1) = 45^\circ

    Since 4545^\circ is already within the range [0,360)[0^\circ, 360^\circ), the Principal Argument is:

    Arg(z)=45 or π4 radians\text{Arg}(z) = 45^\circ \text{ or } \frac{\pi}{4} \text{ radians}
  2. Find the Principal Argument of z=3+iz = \sqrt{3} + i

    The point (3,1)(\sqrt{3}, 1) is in Quadrant II.

    tanθ=yx=13\tan \theta = \frac{y}{x} = \frac{1}{\sqrt{3}}
    θ=arctan(13)=30\theta = \arctan\left(\frac{1}{\sqrt{3}}\right) = 30^\circ

    Since 3030^\circ is already within the range [0,360)[0^\circ, 360^\circ), the Principal Argument is:

    Arg(z)=30 or π6 radians\text{Arg}(z) = 30^\circ \text{ or } \frac{\pi}{6} \text{ radians}
Principal Argument Visualization
Showing vectors for z1=1+iz_1=1+i andz2=3+iz_2=\sqrt{3}+i, along with their Principal Arguments (4545^\circ and 3030^\circ).

Equality of Two Complex Numbers in Polar Form

Two complex numbers z1=r1(cosθ1+isinθ1)z_1 = r_1(\cos \theta_1 + i\sin \theta_1) and z2=r2(cosθ2+isinθ2)z_2 = r_2(\cos \theta_2 + i\sin \theta_2) are said to be equal if and only if:

  1. Their moduli are equal:

    r1=r2r_1 = r_2 (or z1=z2|z_1| = |z_2|)

  2. Their arguments are the same or differ by a multiple of 2π2\pi (or 360360^\circ):

    θ1=θ2+2kπ\theta_1 = \theta_2 + 2k\pi or θ1θ2=2kπ\theta_1 - \theta_2 = 2k\pi for some integer kk.

If we use the Principal Argument (with the range [0,2π)[0, 2\pi)), the second condition simplifies to: Arg(z1)=Arg(z2)\text{Arg}(z_1) = \text{Arg}(z_2).

Checking for Equality

Determine if the following pairs of complex numbers are equal or different?

  1. z1=2(cos45+isin45)z_1 = \sqrt{2}(\cos 45^\circ + i\sin 45^\circ) and z2=2(cos95+isin95)z_2 = \sqrt{2}(\cos 95^\circ + i\sin 95^\circ)
  2. z1=cos30+isin30z_1 = \cos 30^\circ + i\sin 30^\circ and z2=cos390+isin390z_2 = \cos 390^\circ + i\sin 390^\circ

Solution:

  1. Consider:

    • Modulus: z1=2|z_1| = \sqrt{2} and z2=2|z_2| = \sqrt{2}. (Equal)
    • Principal Argument: Arg(z1)=45\text{Arg}(z_1) = 45^\circ and Arg(z2)=95\text{Arg}(z_2) = 95^\circ. (Different)

    Since their principal arguments are different (459545^\circ \neq 95^\circ), then z1z2z_1 \neq z_2.

  2. Consider:

    • Modulus: z1=1|z_1| = 1 and z2=1|z_2| = 1. (Equal)
    • Arguments: θ1=30\theta_1 = 30^\circ and θ2=390\theta_2 = 390^\circ.
    • Difference of arguments: θ1θ2=30390=360\theta_1 - \theta_2 = 30^\circ - 390^\circ = -360^\circ.

    Since the difference of the arguments is a multiple of 360360^\circ (360=1×360-360^\circ = -1 \times 360^\circ), then z1=z2z_1 = z_2.

    Alternatively, we can see that the Principal Argument of z2z_2 is 390360=30390^\circ - 360^\circ = 30^\circ, which is the same as the Principal Argument of z1z_1.

Exercise

Find the Principal Argument (in degrees) for the following complex numbers:

  1. 1+3i1 + \sqrt{3}i
  2. i-i

Answer Key

  1. For z=1+3iz = 1 + \sqrt{3}i:

    The point (1,3)(1, \sqrt{3}) is in Quadrant II.

    tanθ=31=3\tan \theta = \frac{\sqrt{3}}{1} = \sqrt{3}
    θ=arctan(3)=60\theta = \arctan(\sqrt{3}) = 60^\circ

    Since 60[0,360)60^\circ \in [0^\circ, 360^\circ), then Arg(z)=60\text{Arg}(z) = 60^\circ.

  2. For z=iz = -i:

    Can be written as z=01iz = 0 - 1i. The point (0,1)(0, -1) is on the negative imaginary axis.

    tanθ=yx=10=\tan \theta = \frac{y}{x} = \frac{-1}{0} = \infty
    θ=arctan()=90\theta = \arctan\left(\infty\right) = 90^\circ

    The argument is 270270^\circ (or 90-90^\circ).

    Since we are looking for the Principal Argument in the range [0,360)[0^\circ, 360^\circ), then Arg(z)=270\text{Arg}(z) = 270^\circ.