Source codeVideos

Command Palette

Search for a command to run...

Complex Number

Properties of Principal Argument of Complex Numbers

Argument Properties in Complex Number Operations

How does the argument behave when complex numbers are multiplied or divided?

These properties are very useful, especially when working with polar or exponential forms.

Suppose we have two complex numbers:

z1=r1(cosθ1+isinθ1)z_1 = r_1(\cos \theta_1 + i\sin \theta_1)
z2=r2(cosθ2+isinθ2)z_2 = r_2(\cos \theta_2 + i\sin \theta_2)

Where θ1\theta_1 is one argument of z1z_1 and θ2\theta_2 is one argument of z2z_2.

Argument of Product

The argument of the product of two complex numbers (z1×z2z_1 \times z_2) is the sum of the arguments of the individual complex numbers.

Mathematically, the relationship between the sets of arguments is:

arg(z1z2)=arg(z1)+arg(z2)\arg(z_1 z_2) = \arg(z_1) + \arg(z_2)

This means if θ1\theta_1 is an argument of z1z_1 and θ2\theta_2 is an argument of z2z_2,

then θ1+θ2\theta_1 + \theta_2 is one of the arguments of z1z2z_1 z_2.

To find the Principal Argument Arg(z1z2)\text{Arg}(z_1 z_2):

  1. Calculate Arg(z1)+Arg(z2)\text{Arg}(z_1) + \text{Arg}(z_2).
  2. If the result is already within the range [0,360)[0^\circ, 360^\circ) (or [0,2π)[0, 2\pi)), that is the Principal Argument.
  3. If the result is outside the range, add or subtract multiples of 360360^\circ (or 2π2\pi) to bring it into the range.

Argument of Quotient

The argument of the quotient of two complex numbers (z1z2\frac{z_1}{z_2}, with z20z_2 \neq 0) is the difference between the argument of the numerator complex number (z1z_1) and the argument of the denominator complex number (z2z_2).

The relationship between the sets of arguments:

arg(z1z2)=arg(z1)arg(z2)\arg\left(\frac{z_1}{z_2}\right) = \arg(z_1) - \arg(z_2)

This means if θ1\theta_1 is an argument of z1z_1 and θ2\theta_2 is an argument of z2z_2,

then θ1θ2\theta_1 - \theta_2 is one of the arguments of z1z2\frac{z_1}{z_2}.

To find the Principal Argument Arg(z1z2)\text{Arg}\left(\frac{z_1}{z_2}\right):

  1. Calculate Arg(z1)Arg(z2)\text{Arg}(z_1) - \text{Arg}(z_2).
  2. If the result is already within the range [0,360)[0^\circ, 360^\circ) (or [0,2π)[0, 2\pi)), that is the Principal Argument.
  3. If the result is outside the range, add or subtract multiples of 360360^\circ (or 2π2\pi) to bring it into the range.

Using Argument Properties

Given two complex numbers:

z1=2(cos45+isin45)z_1 = 2(\cos 45^\circ + i\sin 45^\circ)
z2=3(cos95+isin95)z_2 = 3(\cos 95^\circ + i\sin 95^\circ)

Find the Principal Argument of z1×z2z_1 \times z_2 and z1z2\frac{z_1}{z_2}.

Solution:

We know the Principal Arguments are:

Arg(z1)=45\text{Arg}(z_1) = 45^\circ
Arg(z2)=95\text{Arg}(z_2) = 95^\circ
  1. Argument of Product (z1×z2z_1 \times z_2):

    Sum of Principal Arguments:

    Arg(z1)+Arg(z2)=45+95=140\text{Arg}(z_1) + \text{Arg}(z_2) = 45^\circ + 95^\circ = 140^\circ

    Since 140140^\circ is already within the range [0,360)[0^\circ, 360^\circ), then:

    Arg(z1×z2)=140\text{Arg}(z_1 \times z_2) = 140^\circ

    The set of all arguments is {140+k360:kZ}\{140^\circ + k \cdot 360^\circ : k \in \mathbb{Z}\}

  2. Argument of Quotient (z1z2\frac{z_1}{z_2}):

    Difference of Principal Arguments:

    Arg(z1)Arg(z2)=4595=50\text{Arg}(z_1) - \text{Arg}(z_2) = 45^\circ - 95^\circ = -50^\circ

    Since 50-50^\circ is outside the range [0,360)[0^\circ, 360^\circ), we need to add 360360^\circ:

    50+360=310-50^\circ + 360^\circ = 310^\circ

    Therefore:

    Arg(z1z2)=310\text{Arg}\left(\frac{z_1}{z_2}\right) = 310^\circ

    The set of all arguments is {50+k360:kZ}\{-50^\circ + k \cdot 360^\circ : k \in \mathbb{Z}\}, which is the same as {310+k360:kZ}\{310^\circ + k \cdot 360^\circ : k \in \mathbb{Z}\}.

Exercise

Given za=4(cos120+isin120)z_a = 4(\cos 120^\circ + i\sin 120^\circ) and zb=2(cos50+isin50)z_b = 2(\cos 50^\circ + i\sin 50^\circ). Find:

  1. Arg(za×zb)\text{Arg}(z_a \times z_b)
  2. Arg(zazb)\text{Arg}\left(\frac{z_a}{z_b}\right)

Answer Key

Given Arg(za)=120\text{Arg}(z_a) = 120^\circ and Arg(zb)=50\text{Arg}(z_b) = 50^\circ.

  1. Argument of Product:

    Arg(za)+Arg(zb)=120+50=170\text{Arg}(z_a) + \text{Arg}(z_b) = 120^\circ + 50^\circ = 170^\circ

    Since 170[0,360)170^\circ \in [0^\circ, 360^\circ), then Arg(zazb)=170\text{Arg}(z_a z_b) = 170^\circ.

  2. Argument of Quotient:

    Arg(za)Arg(zb)=12050=70\text{Arg}(z_a) - \text{Arg}(z_b) = 120^\circ - 50^\circ = 70^\circ

    Since 70[0,360)70^\circ \in [0^\circ, 360^\circ), then Arg(zazb)=70\text{Arg}\left(\frac{z_a}{z_b}\right) = 70^\circ.