Source codeVideos

Command Palette

Search for a command to run...

Functions and Their Modeling

Trigonometric Function of Arbitrary Angle

Understanding Angles Greater than 90°

Have you ever observed a clock? When the minute hand moves from 12 to 6, it forms a 180° angle. Even in one complete rotation, the hand forms a 360° angle.

In mathematics, we need to understand trigonometric values for angles like these. Not just limited to acute angles in right triangles.

Unit Circle

To understand trigonometric functions of arbitrary angles, we use the unit circle. A circle with a radius of exactly 1 unit centered at point O(0,0)O(0,0).

Unit Circle Exploration
Move the slider to see how coordinates change as the angle rotates.
0.52 Radian
360°

Let's understand in detail:

  • Angle θ\theta is always measured from the positive x-axis
  • Positive direction is counterclockwise
  • Every point on the circle has coordinates (x,y)(x, y)

Important definitions:

sinθ=y (vertical coordinate)\sin \theta = y \text{ (vertical coordinate)}
cosθ=x (horizontal coordinate)\cos \theta = x \text{ (horizontal coordinate)}
tanθ=yx=sinθcosθ,x0\tan \theta = \frac{y}{x} = \frac{\sin \theta}{\cos \theta}, \quad x \neq 0

Why Do Signs Change in Each Quadrant?

Notice that as the point moves around the circle, the x and y coordinates can be positive or negative. This is what causes the signs of trigonometric functions to change.

Sign Change Visualization
Observe how sin, cos, and tan values change as the angle passes through each quadrant.
Sin (0°) = 0.00Cos (0°) = 1.00Tan (0°) = 0.00
0.00 Radian
360°

Signs in each quadrant:

QuadrantAngle Rangexysincostan
I0°<θ<90°0° < \theta < 90°+++++
II90°<θ<180°90° < \theta < 180°-++--
III180°<θ<270°180° < \theta < 270°----+
IV270°<θ<360°270° < \theta < 360°+--+-

To avoid confusion, we can remember this with "All Students Take Calculus". In quadrant I All are positive, in quadrant II only Sin is positive, in quadrant III only Tan is positive, in quadrant IV only Cos is positive.

Reference Angle

A reference angle is an acute angle (0° to 90°) formed between the terminal side of an angle and the nearest x-axis. This concept allows us to use trigonometric values of acute angles that we've already memorized.

Understanding Reference Angle
Notice the acute angle formed with the x-axis as the angle changes.
2.36 Radian
360°

How to determine reference angle (α\alpha):

  • Quadrant I: α=θ\alpha = \theta
  • Quadrant II: α=180°θ\alpha = 180° - \theta
  • Quadrant III: α=θ180°\alpha = \theta - 180°
  • Quadrant IV: α=360°θ\alpha = 360° - \theta

Determining Trigonometric Values

Here are systematic steps to determine trigonometric function values:

  1. Simplify the angle (if greater than 360° or negative)
  2. Determine the quadrant where the angle lies
  3. Calculate the reference angle
  4. Use the reference angle value with the appropriate sign for the quadrant

Angle in Quadrant II

Problem: Determine sin120°\sin 120°, cos120°\cos 120°, and tan120°\tan 120°

Solution:

  • Angle 120° lies in quadrant II (since 90°<120°<180°90° < 120° < 180°)
  • Reference angle: α=180°120°=60°\alpha = 180° - 120° = 60°
  • In quadrant II: sin(+),cos(),tan()\sin(+), \cos(-), \tan(-)

Using special angle values for 60°:

sin120°=+sin60°=32\sin 120° = +\sin 60° = \frac{\sqrt{3}}{2}
cos120°=cos60°=12\cos 120° = -\cos 60° = -\frac{1}{2}
tan120°=tan60°=3\tan 120° = -\tan 60° = -\sqrt{3}

Angle in Quadrant III

Problem: Determine trigonometric values for angle 240°

Solution:

  • Angle 240° lies in quadrant III (since 180°<240°<270°180° < 240° < 270°)
  • Reference angle: α=240°180°=60°\alpha = 240° - 180° = 60°
  • In quadrant III: sin(),cos(),tan(+)\sin(-), \cos(-), \tan(+)

Using special angle values for 60°:

sin240°=sin60°=32\sin 240° = -\sin 60° = -\frac{\sqrt{3}}{2}
cos240°=cos60°=12\cos 240° = -\cos 60° = -\frac{1}{2}
tan240°=+tan60°=3\tan 240° = +\tan 60° = \sqrt{3}

Angle in Quadrant IV

Problem: Determine trigonometric values for angle 300°

Solution:

  • Angle 300° lies in quadrant IV (since 270°<300°<360°270° < 300° < 360°)

  • Reference angle: α=360°300°=60°\alpha = 360° - 300° = 60°

  • In quadrant IV: sin(),cos(+),tan()\sin(-), \cos(+), \tan(-)

Using special angle values for 60°:

sin300°=sin60°=32\sin 300° = -\sin 60° = -\frac{\sqrt{3}}{2}
cos300°=+cos60°=12\cos 300° = +\cos 60° = \frac{1}{2}
tan300°=tan60°=3\tan 300° = -\tan 60° = -\sqrt{3}

Handling Special Angles

Negative Angles

When the angle is negative, we move clockwise. Use the properties:

  • sin(θ)=sinθ\sin(-\theta) = -\sin \theta (odd function)
  • cos(θ)=cosθ\cos(-\theta) = \cos \theta (even function)
  • tan(θ)=tanθ\tan(-\theta) = -\tan \theta (odd function)

Example: sin(30°)=sin30°=12\sin(-30°) = -\sin 30° = -\frac{1}{2}

Angles Greater than 360°

Use the periodicity property. Subtract or add multiples of 360° until the angle is in the range of 0° to 360°.

Example:

  • 750°=750°2(360°)=750°720°=30°750° = 750° - 2(360°) = 750° - 720° = 30°
  • Therefore sin750°=sin30°=12\sin 750° = \sin 30° = \frac{1}{2}

Exercises

  1. Determine the values of sin315°\sin 315°, cos315°\cos 315°, and tan315°\tan 315°.

  2. Calculate sin(60°)+cos210°tan(135°)\sin(-60°) + \cos 210° - \tan(-135°).

  3. If sinθ=35\sin \theta = \frac{3}{5} and θ\theta is in quadrant II, determine cosθ\cos \theta and tanθ\tan \theta.

  4. Simplify sin840°cos(330°)\sin 840° \cdot \cos(-330°).

  5. A windmill rotates 1050° from its initial position. If the initial position of the blade is on the positive x-axis, determine the coordinates of the blade tip on the unit circle after this rotation.

Answer Key

  1. For angle 315°, we need to determine its quadrant first.

    Since 270°<315°<360°270° < 315° < 360°, the angle is in quadrant IV.

    The reference angle is 360°315°=45°360° - 315° = 45°.

    sin315°=sin45°=22\sin 315° = -\sin 45° = -\frac{\sqrt{2}}{2}
    cos315°=+cos45°=22\cos 315° = +\cos 45° = \frac{\sqrt{2}}{2}
    tan315°=tan45°=1\tan 315° = -\tan 45° = -1
  2. Let's calculate each term separately. For sin(60°)\sin(-60°), use the odd function property.

    For cos210°\cos 210°, the angle is in quadrant III with reference 30°.

    For tan(135°)\tan(-135°), first convert to positive angle.

    sin(60°)=sin60°=32\sin(-60°) = -\sin 60° = -\frac{\sqrt{3}}{2}
    cos210°=cos30°=32\cos 210° = -\cos 30° = -\frac{\sqrt{3}}{2}
    tan(135°)=tan135°=(tan45°)=1\tan(-135°) = -\tan 135° = -(-\tan 45°) = 1
    Result=3232+1=3+1\text{Result} = -\frac{\sqrt{3}}{2} - \frac{\sqrt{3}}{2} + 1 = -\sqrt{3} + 1
  3. Given sinθ=35\sin \theta = \frac{3}{5} in quadrant II.

    Use the Pythagorean identity to find cosθ\cos \theta.

    Remember that in quadrant II, cos\cos is negative.

    sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1
    (35)2+cos2θ=1\left(\frac{3}{5}\right)^2 + \cos^2 \theta = 1
    cos2θ=1925=1625\cos^2 \theta = 1 - \frac{9}{25} = \frac{16}{25}
    cosθ=45 (negative in quadrant II)\cos \theta = -\frac{4}{5} \text{ (negative in quadrant II)}
    tanθ=sinθcosθ=3/54/5=34\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3/5}{-4/5} = -\frac{3}{4}
  4. First simplify the angles.

    840°=840°2(360°)=120°840° = 840° - 2(360°) = 120°

    For 330°-330°, add 360° to get 30°.

    sin840°=sin120°=sin(180°60°)=sin60°=32\sin 840° = \sin 120° = \sin(180° - 60°) = \sin 60° = \frac{\sqrt{3}}{2}
    cos(330°)=cos330°=cos(360°30°)=cos30°=32\cos(-330°) = \cos 330° = \cos(360° - 30°) = \cos 30° = \frac{\sqrt{3}}{2}
    sin840°cos(330°)=3232=34\sin 840° \cdot \cos(-330°) = \frac{\sqrt{3}}{2} \cdot \frac{\sqrt{3}}{2} = \frac{3}{4}
  5. Angle 1050° needs to be simplified first.

    1050°=1050°2(360°)=1050°720°=330°1050° = 1050° - 2(360°) = 1050° - 720° = 330°

    Angle 330° is in quadrant IV with reference angle 30°.

    x=cos330°=cos30°=32x = \cos 330° = \cos 30° = \frac{\sqrt{3}}{2}
    y=sin330°=sin30°=12y = \sin 330° = -\sin 30° = -\frac{1}{2}
    Blade tip coordinates: (32,12)\text{Blade tip coordinates: } \left(\frac{\sqrt{3}}{2}, -\frac{1}{2}\right)