Source codeVideos

Command Palette

Search for a command to run...

Functions and Their Modeling

Trigonometric Identity

Understanding Trigonometric Identities

Have you ever noticed that some mathematical equations are always true for any value of their variables? For example, (a+b)2=a2+2ab+b2(a + b)^2 = a^2 + 2ab + b^2 is always true for any values of a and b. Equations like this are called identities.

In trigonometry, we also have equations that are always true for any angle value. These are called trigonometric identities. These identities are very useful for simplifying trigonometric expressions and solving equations.

Basic Trigonometric Identities

Pythagorean Identity

Let's start with the most fundamental identity. Consider a unit circle with point P(x,y)P(x, y) that forms angle θ\theta with the positive x-axis.

Unit Circle and Pythagorean Identity
Notice how the coordinates of point P change as the angle changes. These coordinates are the values of cos θ and sin θ.
0.79 Radian
360°

On the unit circle:

  • Radius = 1
  • x-coordinate = cosθ\cos \theta
  • y-coordinate = sinθ\sin \theta

Using the Pythagorean theorem for point P:

x2+y2=12x^2 + y^2 = 1^2

Substituting the values of x and y:

(cosθ)2+(sinθ)2=1(\cos \theta)^2 + (\sin \theta)^2 = 1

Or can be written as:

sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1

This is the Pythagorean identity, the most fundamental identity in trigonometry.

Other Forms of Pythagorean Identity:

From the basic identity above, we can derive two other forms:

Second form: Divide both sides by cos2θ\cos^2 \theta (for cosθ0\cos \theta \neq 0)

sin2θcos2θ+cos2θcos2θ=1cos2θ\frac{\sin^2 \theta}{\cos^2 \theta} + \frac{\cos^2 \theta}{\cos^2 \theta} = \frac{1}{\cos^2 \theta}
tan2θ+1=sec2θ\tan^2 \theta + 1 = \sec^2 \theta

Third form: Divide both sides by sin2θ\sin^2 \theta (for sinθ0\sin \theta \neq 0)

sin2θsin2θ+cos2θsin2θ=1sin2θ\frac{\sin^2 \theta}{\sin^2 \theta} + \frac{\cos^2 \theta}{\sin^2 \theta} = \frac{1}{\sin^2 \theta}
1+cot2θ=csc2θ1 + \cot^2 \theta = \csc^2 \theta

Reciprocal Identities

Each trigonometric function has its reciprocal. This relationship forms reciprocal identities:

sinθ=1cscθ\sin \theta = \frac{1}{\csc \theta}
cosθ=1secθ\cos \theta = \frac{1}{\sec \theta}
tanθ=1cotθ\tan \theta = \frac{1}{\cot \theta}

Or in the opposite form:

cscθ=1sinθ\csc \theta = \frac{1}{\sin \theta}
secθ=1cosθ\sec \theta = \frac{1}{\cos \theta}
cotθ=1tanθ\cot \theta = \frac{1}{\tan \theta}

Quotient Identities

Quotient identities relate tangent and cotangent to sine and cosine:

tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta}
cotθ=cosθsinθ\cot \theta = \frac{\cos \theta}{\sin \theta}
Trigonometric Function Visualization
Observe how the ratios of triangle sides give sin, cos, and tan values. Also notice how these values change as the angle changes.
Sin (30°) = 0.50Cos (30°) = 0.87Tan (30°) = 0.58
0.52 Radian
360°

Both identities can be proven directly from the definition of trigonometric functions on the unit circle.

Even and Odd Function Identities

When angles are negative, trigonometric functions have special properties:

Even function (symmetry about y-axis):

cos(θ)=cosθ\cos(-\theta) = \cos \theta

Odd functions (symmetry about origin):

sin(θ)=sinθ\sin(-\theta) = -\sin \theta
tan(θ)=tanθ\tan(-\theta) = -\tan \theta
Exploring Even and Odd Properties
Try moving the slider to negative and positive values. Notice how cos, sin, and tan values change for opposite angles.
1.05 Radian
360°

Using Identities in Proofs

Let's see how trigonometric identities are used to prove other equations.

Simplifying Expressions

Simplify sin2θcosθ+cosθ\frac{\sin^2 \theta}{\cos \theta} + \cos \theta

Solution:

sin2θcosθ+cosθ=sin2θcosθ+cos2θcosθ\frac{\sin^2 \theta}{\cos \theta} + \cos \theta = \frac{\sin^2 \theta}{\cos \theta} + \frac{\cos^2 \theta}{\cos \theta}
=sin2θ+cos2θcosθ= \frac{\sin^2 \theta + \cos^2 \theta}{\cos \theta}
=1cosθ(using Pythagorean identity)= \frac{1}{\cos \theta} \quad \text{(using Pythagorean identity)}
=secθ= \sec \theta

Proving Identities

Prove that 1+tan2θsecθ=secθ\frac{1 + \tan^2 \theta}{\sec \theta} = \sec \theta

Solution:

We start from the left side:

1+tan2θsecθ=sec2θsecθ(using 1+tan2θ=sec2θ)\frac{1 + \tan^2 \theta}{\sec \theta} = \frac{\sec^2 \theta}{\sec \theta} \quad \text{(using } 1 + \tan^2 \theta = \sec^2 \theta \text{)}
=secθ= \sec \theta

It is proven that the left side equals the right side.

Determining Trigonometric Function Values

Trigonometric identities are very useful for determining the values of all trigonometric functions when one of them is known.

Identity Applications

If sinθ=35\sin \theta = \frac{3}{5} and 90°<θ<180°90° < \theta < 180° (quadrant II), determine the values of other trigonometric functions.

Solution:

Use the Pythagorean identity to find cosθ\cos \theta:

sin2θ+cos2θ=1\sin^2 \theta + \cos^2 \theta = 1
(35)2+cos2θ=1\left(\frac{3}{5}\right)^2 + \cos^2 \theta = 1
925+cos2θ=1\frac{9}{25} + \cos^2 \theta = 1
cos2θ=1925=1625\cos^2 \theta = 1 - \frac{9}{25} = \frac{16}{25}
cosθ=±45\cos \theta = \pm \frac{4}{5}

Since θ\theta is in quadrant II, then cosθ<0\cos \theta < 0. Therefore, cosθ=45\cos \theta = -\frac{4}{5}

Next, calculate the other trigonometric functions:

tanθ=sinθcosθ=3/54/5=34\tan \theta = \frac{\sin \theta}{\cos \theta} = \frac{3/5}{-4/5} = -\frac{3}{4}
cscθ=1sinθ=53\csc \theta = \frac{1}{\sin \theta} = \frac{5}{3}
secθ=1cosθ=54\sec \theta = \frac{1}{\cos \theta} = -\frac{5}{4}
cotθ=1tanθ=43\cot \theta = \frac{1}{\tan \theta} = -\frac{4}{3}

Exercises

  1. Simplify the expression tanθcosθsinθ\frac{\tan \theta \cdot \cos \theta}{\sin \theta}

  2. Prove the identity sinθ1+cosθ=1cosθsinθ\frac{\sin \theta}{1 + \cos \theta} = \frac{1 - \cos \theta}{\sin \theta}

  3. If cosθ=513\cos \theta = \frac{5}{13} and 270°<θ<360°270° < \theta < 360°, determine the values of all trigonometric functions.

  4. Simplify sin4θcos4θ\sin^4 \theta - \cos^4 \theta

  5. If tanθ=43\tan \theta = \frac{4}{3} and sinθ<0\sin \theta < 0, determine the values of sinθ\sin \theta and cosθ\cos \theta.

Answer Key

  1. Let's simplify step by step:

    tanθcosθsinθ=sinθcosθcosθsinθ\frac{\tan \theta \cdot \cos \theta}{\sin \theta} = \frac{\frac{\sin \theta}{\cos \theta} \cdot \cos \theta}{\sin \theta}
    =sinθsinθ=1= \frac{\sin \theta}{\sin \theta} = 1
  2. To prove the identity, we will transform the left side:

    sinθ1+cosθ=sinθ1+cosθ1cosθ1cosθ\frac{\sin \theta}{1 + \cos \theta} = \frac{\sin \theta}{1 + \cos \theta} \cdot \frac{1 - \cos \theta}{1 - \cos \theta}
    =sinθ(1cosθ)(1+cosθ)(1cosθ)= \frac{\sin \theta (1 - \cos \theta)}{(1 + \cos \theta)(1 - \cos \theta)}
    =sinθ(1cosθ)1cos2θ= \frac{\sin \theta (1 - \cos \theta)}{1 - \cos^2 \theta}
    =sinθ(1cosθ)sin2θ= \frac{\sin \theta (1 - \cos \theta)}{\sin^2 \theta}
    =1cosθsinθ= \frac{1 - \cos \theta}{\sin \theta}
  3. Given cosθ=513\cos \theta = \frac{5}{13} in quadrant IV.

    Finding sinθ\sin \theta:

    sin2θ=1cos2θ=125169=144169\sin^2 \theta = 1 - \cos^2 \theta = 1 - \frac{25}{169} = \frac{144}{169}
    sinθ=1213 (negative in quadrant IV)\sin \theta = -\frac{12}{13} \text{ (negative in quadrant IV)}

    Other trigonometric functions:

    tanθ=12/135/13=125\tan \theta = \frac{-12/13}{5/13} = -\frac{12}{5}
    cscθ=1312\csc \theta = -\frac{13}{12}
    secθ=135\sec \theta = \frac{13}{5}
    cotθ=512\cot \theta = -\frac{5}{12}
  4. Use difference of squares factoring:

    sin4θcos4θ=(sin2θ)2(cos2θ)2\sin^4 \theta - \cos^4 \theta = (\sin^2 \theta)^2 - (\cos^2 \theta)^2
    =(sin2θ+cos2θ)(sin2θcos2θ)= (\sin^2 \theta + \cos^2 \theta)(\sin^2 \theta - \cos^2 \theta)
    =1(sin2θcos2θ)= 1 \cdot (\sin^2 \theta - \cos^2 \theta)
    =sin2θcos2θ= \sin^2 \theta - \cos^2 \theta
  5. Given tanθ=43\tan \theta = \frac{4}{3} and sinθ<0\sin \theta < 0.

    Since tanθ>0\tan \theta > 0 and sinθ<0\sin \theta < 0, then cosθ<0\cos \theta < 0 (quadrant III).

    Use the identity 1+tan2θ=sec2θ1 + \tan^2 \theta = \sec^2 \theta:

    1+169=sec2θ1 + \frac{16}{9} = \sec^2 \theta
    sec2θ=259\sec^2 \theta = \frac{25}{9}
    secθ=53 (negative in quadrant III)\sec \theta = -\frac{5}{3} \text{ (negative in quadrant III)}
    cosθ=35\cos \theta = -\frac{3}{5}

    For sinθ\sin \theta:

    tanθ=sinθcosθ\tan \theta = \frac{\sin \theta}{\cos \theta}
    43=sinθ3/5\frac{4}{3} = \frac{\sin \theta}{-3/5}
    sinθ=43(35)=45\sin \theta = \frac{4}{3} \cdot \left(-\frac{3}{5}\right) = -\frac{4}{5}