Source codeVideos

Command Palette

Search for a command to run...

Functions and Their Modeling

Trigonometric Function Graph

Understanding Trigonometric Function Graphs

Have you ever seen ocean waves? Their up-and-down movement forms patterns that repeat regularly. It turns out that these patterns can be modeled with trigonometric functions.

Before studying trigonometric function graphs, we need to understand angle measurement in radians. In daily life, we are accustomed to using degrees. However, in advanced mathematics, radians are more frequently used.

Converting Degrees and Radians

One complete rotation of a circle is 360° or 2π2\pi radians. This relationship gives us conversion formulas:

180°=π radians180° = \pi \text{ radians}
1°=π180 radians1° = \frac{\pi}{180} \text{ radians}
1 radian=180°π57.3°1 \text{ radian} = \frac{180°}{\pi} \approx 57.3°

Conversion Examples

Converting degrees to radians:

90°=90×π180=π2 radians90° = 90 \times \frac{\pi}{180} = \frac{\pi}{2} \text{ radians}
60°=60×π180=π3 radians60° = 60 \times \frac{\pi}{180} = \frac{\pi}{3} \text{ radians}
45°=45×π180=π4 radians45° = 45 \times \frac{\pi}{180} = \frac{\pi}{4} \text{ radians}

Converting radians to degrees:

π6 radians=π6×180π=30°\frac{\pi}{6} \text{ radians} = \frac{\pi}{6} \times \frac{180}{\pi} = 30°
3π4 radians=3π4×180π=135°\frac{3\pi}{4} \text{ radians} = \frac{3\pi}{4} \times \frac{180}{\pi} = 135°

What are Amplitude and Period?

Before studying trigonometric function graphs, it's important to understand two key concepts: amplitude and period.

Amplitude

Amplitude is the maximum distance from the center line (x-axis) to the peak or trough of the graph. For functions y=Asinxy = A \sin x or y=Acosxy = A \cos x, the amplitude is A|A|.

Amplitude Concept
Amplitude determines the 'height' of the wave. Notice the distance from the x-axis to the peak.

Period

Period is the length of interval needed for one complete cycle. For functions y=sin(Bx)y = \sin(Bx) or y=cos(Bx)y = \cos(Bx), the period is 2πB\frac{2\pi}{|B|}.

Period Concept
Period is the horizontal distance for one complete wave.

General Formulas

For trigonometric functions in the form:

  • y=Asin(Bx)y = A \sin(Bx) and y=Acos(Bx)y = A \cos(Bx):

    y=Asin(Bx)y = A \sin(Bx)
    y=Acos(Bx)y = A \cos(Bx)
  • y=Atan(Bx)y = A \tan(Bx):

    y=Atan(Bx)y = A \tan(Bx)
    Amplitude=undefined (infinite)\text{Amplitude} = \text{undefined (infinite)}
    Period=πB\text{Period} = \frac{\pi}{|B|}

Sine Function Graph

The function y=sinxy = \sin x is a periodic function with period 2π2\pi. This means its graph pattern repeats every 2π2\pi interval.

Graph of y=sinxy = \sin x
Notice how the graph forms waves that repeat regularly.

Characteristics of y=sinxy = \sin x graph:

  • Period: 2π2\pi (graph repeats every 2π2\pi units)
  • Amplitude: 1 (maximum - minimum value divided by 2)
  • Domain: All real numbers
  • Range: [1,1][-1, 1]
  • x-intercepts: x=nπx = n\pi where nn is an integer
  • Maximum value: 1 at x=π2+2nπx = \frac{\pi}{2} + 2n\pi
  • Minimum value: -1 at x=3π2+2nπx = \frac{3\pi}{2} + 2n\pi

Cosine Function Graph

The function y=cosxy = \cos x has a shape similar to sine, but shifted π2\frac{\pi}{2} to the left.

Graph of y=cosxy = \cos x
Compare with the sine graph. Notice the shift.

Characteristics of y=cosxy = \cos x graph:

  • Period: 2π2\pi
  • Amplitude: 1
  • Domain: All real numbers
  • Range: [1,1][-1, 1]
  • x-intercepts: x=π2+nπx = \frac{\pi}{2} + n\pi
  • Maximum value: 1 at x=2nπx = 2n\pi
  • Minimum value: -1 at x=π+2nπx = \pi + 2n\pi

Comparison of Sin and Cos

Comparison of Sin and Cos Graphs
Notice that cosx=sin(x+π2)\cos x = \sin(x + \frac{\pi}{2}).

Tangent Function Graph

The function y=tanxy = \tan x differs from sin and cos because it has vertical asymptotes.

Graph of y=tanxy = \tan x
Notice the dashed lines showing vertical asymptotes.

Characteristics of y=tanxy = \tan x graph:

  • Period: π\pi (shorter than sin and cos)
  • Amplitude: Undefined
  • Domain: xπ2+nπx \neq \frac{\pi}{2} + n\pi
  • Range: All real numbers
  • Vertical asymptotes: x=π2+nπx = \frac{\pi}{2} + n\pi
  • x-intercepts: x=nπx = n\pi

Transformations of Trigonometric Functions

Amplitude Changes

The function y=Asinxy = A \sin x changes the amplitude to A|A|.

Effect of Amplitude
Notice how the value of A affects the wave height.

Period Changes

The function y=sin(Bx)y = \sin(Bx) changes the period to 2πB\frac{2\pi}{|B|}.

Effect of Period
The value of B affects how fast the function repeats.

Vertical and Horizontal Shifts

General form:

y=Asin(B(xC))+Dy = A \sin(B(x - C)) + D
  • AA: Amplitude
  • BB: Affects period ( period=2πB\text{period} = \frac{2\pi}{|B|})
  • CC: Horizontal shift (phase)
  • DD: Vertical shift

Notice the horizontal and vertical shifts of the graph:

Complete Transformation
Graph of y=2sin(xπ4)+1y = 2\sin(x - \frac{\pi}{4}) + 1 shows all transformations.

Exercises

  1. Convert the following angles:

    • 120° to radians
    • 5π6\frac{5\pi}{6} radians to degrees
  2. Determine the period and amplitude of:

    • y=3sin(2x)y = 3 \sin(2x)
    • y=2cos(x3)y = -2 \cos(\frac{x}{3})
  3. Sketch the graph of y=2sin(x+π3)1y = 2 \sin(x + \frac{\pi}{3}) - 1. Determine:

    • Amplitude
    • Period
    • Phase shift
    • Vertical shift
  4. If tidal height is modeled by h(t)=2sin(πt6)+5h(t) = 2 \sin(\frac{\pi t}{6}) + 5 meters, where t is in hours:

    • What are the maximum and minimum water heights?
    • What is the tidal period?
  5. Determine the equation of a trigonometric function that has:

    • Amplitude 3
    • Period π\pi
    • Shifted π4\frac{\pi}{4} to the right
    • Shifted 2 units up

Answer Key

  1. Angle conversion:

    • 120°=120×π180=2π3120° = 120 \times \frac{\pi}{180} = \frac{2\pi}{3} radians
    • 5π6=5π6×180π=150°\frac{5\pi}{6} = \frac{5\pi}{6} \times \frac{180}{\pi} = 150°
  2. Period and amplitude:

    • y=3sin(2x)y = 3 \sin(2x): Amplitude = 3, Period = 2π2=π\frac{2\pi}{2} = \pi
    • y=2cos(x3)y = -2 \cos(\frac{x}{3}): Amplitude = 2, Period = 2π1/3=6π\frac{2\pi}{1/3} = 6\pi
  3. For y=2sin(x+π3)1y = 2 \sin(x + \frac{\pi}{3}) - 1:

    • Amplitude: 2
    • Period: 2π2\pi
    • Phase shift: π3\frac{\pi}{3} to the left
    • Vertical shift: 1 unit down
  4. For h(t)=2sin(πt6)+5h(t) = 2 \sin(\frac{\pi t}{6}) + 5:

    • Maximum height: 5 + 2 = 7 meters
    • Minimum height: 5 - 2 = 3 meters
    • Period: 2ππ/6=12\frac{2\pi}{\pi/6} = 12 hours
  5. Equation that satisfies the requirements:

    y=3sin(2(xπ4))+2y = 3 \sin(2(x - \frac{\pi}{4})) + 2

    or

    y=3sin(2xπ2)+2y = 3 \sin(2x - \frac{\pi}{2}) + 2