Source codeVideos

Command Palette

Search for a command to run...

Finding the Matrix Associated with Dilation

How to find the matrix associated with a dilation operation? Recall that a point (x,y)(x,y) is mapped by a dilation with a factor k0k \neq 0 and center OO to (kx,ky)(kx,ky).

Suppose the matrix we are looking for is (rstu)\begin{pmatrix} r & s \\ t & u \end{pmatrix}.

Find r,s,t,ur, s, t, u such that it satisfies

(rstu)(xy)=(kxky)\begin{pmatrix} r & s \\ t & u \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix}

From the matrix multiplication on the left side, we get:

(rx+sytx+uy)=(kxky)\begin{pmatrix} rx + sy \\ tx + uy \end{pmatrix} = \begin{pmatrix} kx \\ ky \end{pmatrix}

By equating the corresponding components:

  • First row: rx+sy=kxrx + sy = kx. For this equation to hold for all xx and yy, the coefficients of xx must be equal, and the coefficients of yy must be equal. Thus, r=kr = k and s=0s = 0.
  • Second row: tx+uy=kytx + uy = ky. Similarly, t=0t = 0 and u=ku = k.

Dilation Matrix with Respect to the Origin

The matrix associated with a dilation by a factor k0k \neq 0 with respect to the origin O(0,0)O(0,0) is

(k00k)\begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix}

Matrix Operation for Dilation with Respect to an Arbitrary Point

A point (x,y)(x,y) dilated by a factor k0k \neq 0 and center (a,b)(a,b) will be mapped to (k(xa)+a,k(yb)+b)(k(x-a)+a,\, k(y-b)+b).

Find the combination of matrix operations on the position vector (xayb)\begin{pmatrix} x-a \\ y-b \end{pmatrix} such that the result is (k(xa)+ak(yb)+b)\begin{pmatrix} k(x-a)+a \\ k(y-b)+b \end{pmatrix}.

The matrix operation associated with a dilation by a factor k0k \neq 0 with respect to the point (a,b)(a,b) is

(xy)=(k00k)(xayb)+(ab)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \begin{pmatrix} x-a \\ y-b \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}

or it can also be written as:

(xy)(ab)=(k00k)((xy)(ab))\begin{pmatrix} x' \\ y' \end{pmatrix} - \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} k & 0 \\ 0 & k \end{pmatrix} \left( \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} a \\ b \end{pmatrix} \right)

Finding the Image of a Dilation Using Matrices

Determine the image of point A(2,4)A(2,4) transformed by a dilation with a factor of 22 with respect to the center point P(1,1)P(1,1)!

Alternative Solution:

Given x=2,y=4,k=2,a=1,b=1x=2, y=4, k=2, a=1, b=1.

(xy)=(2002)(2141)+(11)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 2-1 \\ 4-1 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}
(xy)=(2002)(13)+(11)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}
(xy)=((2)(1)+(0)(3)(0)(1)+(2)(3))+(11)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} (2)(1) + (0)(3) \\ (0)(1) + (2)(3) \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix}
(xy)=(26)+(11)=(37)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 2 \\ 6 \end{pmatrix} + \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 3 \\ 7 \end{pmatrix}

Thus, the image of point A(2,4)A(2,4) is A(3,7)A'(3,7).

Visualization of Dilation of Point A(2,4)A(2,4) with Center P(1,1)P(1,1) and Scale Factor k=2k=2
Point A(2,4)A(2,4) is dilated with respect to the center P(1,1)P(1,1) with a scale factor k=2k=2 to produce the image A(3,7)A'(3,7). The line from the center to the original point and from the center to the image lie on the same line, and the distance PAPA' is twice the distance PAPA.

Exercises

  1. Find the coordinates of the image of the point (a,b)(a,b) under the dilation [O,3][O,3]!
  2. Determine the matrix corresponding to a dilation with a scale factor of 2-2 and centered at O(0,0)O(0,0).
  3. A point B(1,5)B(-1, 5) is dilated with center P(2,3)P(2, -3) and scale factor k=12k = \frac{1}{2}. Determine the coordinates of the image of point BB!
  4. A triangle KLMKLM with vertices K(1,1)K(1,1), L(5,1)L(5,1), and M(3,4)M(3,4) is dilated with center O(0,0)O(0,0) and scale factor 22. Draw the original triangle and its image, then determine the coordinates of the image vertices!

Key Answers

  1. The dilation [O,3][O,3] means the center of dilation is O(0,0)O(0,0) and the scale factor is k=3k=3.

    Let the point be Q(a,b)Q(a,b).

    Then x=a,y=b,k=3x=a, y=b, k=3.

    (xy)=(3003)(ab)=(3a3b)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix} \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} 3a \\ 3b \end{pmatrix}

    Thus, the coordinates of the image of point (a,b)(a,b) are (3a,3b)(3a, 3b).

  2. Scale factor k=2k=-2, center O(0,0)O(0,0).

    The dilation matrix is:

    (2002)\begin{pmatrix} -2 & 0 \\ 0 & -2 \end{pmatrix}
    .

  3. Point B(1,5)B(-1, 5), center P(2,3)P(2, -3), scale factor k=12k = \frac{1}{2}.

    x=1,y=5,a=2,b=3,k=12x=-1, y=5, a=2, b=-3, k=\frac{1}{2}.

    (xy)=(120012)(125(3))+(23)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -1-2 \\ 5-(-3) \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \end{pmatrix}
    (xy)=(120012)(38)+(23)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} -3 \\ 8 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \end{pmatrix}
    (xy)=((12)(3)+(0)(8)(0)(3)+(12)(8))+(23)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} (\frac{1}{2})(-3) + (0)(8) \\ (0)(-3) + (\frac{1}{2})(8) \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \end{pmatrix}
    (xy)=(324)+(23)=(32+4243)=(121)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -\frac{3}{2} \\ 4 \end{pmatrix} + \begin{pmatrix} 2 \\ -3 \end{pmatrix} = \begin{pmatrix} -\frac{3}{2} + \frac{4}{2} \\ 4 - 3 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ 1 \end{pmatrix}

    The coordinates of the image of point BB are B(12,1)B'(\frac{1}{2}, 1).

  4. Triangle KLMKLM with K(1,1)K(1,1), L(5,1)L(5,1), M(3,4)M(3,4).

    Center O(0,0)O(0,0), k=2k=2.

    Image of point K(1,1)K(1,1):

    (xKyK)=(2002)(11)=(22)    K(2,2)\begin{pmatrix} x_K' \\ y_K' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 2 \end{pmatrix} \implies K'(2,2)

    Image of point L(5,1)L(5,1):

    (xLyL)=(2002)(51)=(102)    L(10,2)\begin{pmatrix} x_L' \\ y_L' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} = \begin{pmatrix} 10 \\ 2 \end{pmatrix} \implies L'(10,2)

    Image of point M(3,4)M(3,4):

    (xMyM)=(2002)(34)=(68)    M(6,8)\begin{pmatrix} x_M' \\ y_M' \end{pmatrix} = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 3 \\ 4 \end{pmatrix} = \begin{pmatrix} 6 \\ 8 \end{pmatrix} \implies M'(6,8)
    Visualization of Dilation of Triangle KLMKLM with Center O(0,0)O(0,0) and Scale Factor k=2k=2
    Triangle KLMKLM is dilated to become triangle KLMK'L'M'. The center of dilation is O(0,0)O(0,0).