Source codeVideos

Command Palette

Search for a command to run...

Finding the Rotation Matrix about the Origin

The image of a point (x,y)(x,y) rotated about the origin (0,0)(0,0) by an angle θ\theta is (xcosθysinθ,xsinθ+ycosθ)(x \cos \theta - y \sin \theta, x \sin \theta + y \cos \theta).

We want to find a 2×22 \times 2 matrix, say (rstu)\begin{pmatrix} r & s \\ t & u \end{pmatrix}, that represents this rotation transformation.

This matrix must satisfy:

(rstu)(xy)=(xcosθysinθxsinθ+ycosθ)\begin{pmatrix} r & s \\ t & u \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{pmatrix}

From the matrix multiplication on the left side, we get:

(rx+sytx+uy)=(xcosθysinθxsinθ+ycosθ)\begin{pmatrix} rx + sy \\ tx + uy \end{pmatrix} = \begin{pmatrix} x \cos \theta - y \sin \theta \\ x \sin \theta + y \cos \theta \end{pmatrix}

By equating the corresponding components:

  • First row: rx+sy=xcosθysinθrx + sy = x \cos \theta - y \sin \theta.

    For this equation to hold for all xx and yy, the coefficients of xx must be equal and the coefficients of yy must be equal. Thus, r=cosθr = \cos \theta and s=sinθs = -\sin \theta.

  • Second row: tx+uy=xsinθ+ycosθtx + uy = x \sin \theta + y \cos \theta.

    Similarly, t=sinθt = \sin \theta and u=cosθu = \cos \theta.

Rotation Matrix about the Origin

The matrix associated with a rotation by an angle θ\theta radians (or degrees) about the origin O(0,0)O(0,0) is:

Rθ=(cosθsinθsinθcosθ)R_\theta = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}

Matrix Operation for Rotation about an Arbitrary Point

To rotate a point (x,y)(x,y) about an arbitrary point P(a,b)P(a,b) by an angle θ\theta, we perform three steps:

  1. Translate the point (x,y)(x,y) so that P(a,b)P(a,b) becomes the origin: (xa,yb)(x-a, y-b).
  2. Rotate the translated point about the origin by θ\theta using the matrix RθR_\theta.
  3. Translate the rotated point back by adding (a,b)(a,b).

Matrix Operation for Rotation about an Arbitrary Point

The operation associated with rotation by an angle θ\theta radians about the point (a,b)(a,b) is:

(xy)=(cosθsinθsinθcosθ)(xayb)+(ab)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix} \begin{pmatrix} x-a \\ y-b \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}

Finding a Specific Rotation Matrix

The matrix associated with a rotation by θ=14π\theta = \frac{1}{4}\pi radians (4545^\circ) about the origin is:

We know cos(π4)=12\cos(\frac{\pi}{4}) = \frac{1}{\sqrt{2}} and sin(π4)=12\sin(\frac{\pi}{4}) = \frac{1}{\sqrt{2}}.

Rπ4=(cos(π4)sin(π4)sin(π4)cos(π4))=(12121212)R_{\frac{\pi}{4}} = \begin{pmatrix} \cos(\frac{\pi}{4}) & -\sin(\frac{\pi}{4}) \\ \sin(\frac{\pi}{4}) & \cos(\frac{\pi}{4}) \end{pmatrix} = \begin{pmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}

This is the required matrix.

Visualization of Rotating Point (2,0) by 4545^\circ about the Origin
Point A(2,0)A(2,0) is rotated by 4545^\circ to become A(2,2)A'(\sqrt{2}, \sqrt{2}). 21.414\sqrt{2} \approx 1.414.

Exercises

  1. Determine the matrices associated with a rotation about the origin O(0,0)O(0,0) by 16π\frac{1}{6}\pi radians.
  2. Determine the image of point P(4,2)P(4,2) if it is rotated about the origin O(0,0)O(0,0) by 6060^\circ.
  3. Determine the image of point Q(3,1)Q(3,1) if it is rotated about the point C(1,2)C(1,-2) by 9090^\circ.

Key Answers

  1. Given θ=π6\theta = \frac{\pi}{6} or 3030^\circ:

    cos(π6)=32\cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2}
    sin(π6)=12\sin(\frac{\pi}{6}) = \frac{1}{2}

    Rotation matrix:

    (32121232)\begin{pmatrix} \frac{\sqrt{3}}{2} & -\frac{1}{2} \\ \frac{1}{2} & \frac{\sqrt{3}}{2} \end{pmatrix}
  2. Point P(4,2)P(4,2), θ=60\theta = 60^\circ. cos60=12\cos 60^\circ = \frac{1}{2}, sin60=32\sin 60^\circ = \frac{\sqrt{3}}{2}.

    (xy)=(12323212)(42)=((4)(12)(2)(32)(4)(32)+(2)(12))=(2323+1)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} \frac{1}{2} & -\frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{1}{2} \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} = \begin{pmatrix} (4)(\frac{1}{2}) - (2)(\frac{\sqrt{3}}{2}) \\ (4)(\frac{\sqrt{3}}{2}) + (2)(\frac{1}{2}) \end{pmatrix} = \begin{pmatrix} 2 - \sqrt{3} \\ 2\sqrt{3} + 1 \end{pmatrix}

    Image: P(23,23+1)P'(2-\sqrt{3}, 2\sqrt{3}+1).

  3. Given point Q(3,1)Q(3,1), center C(1,2)C(1,-2), θ=90\theta = 90^\circ. (a,b)=(1,2)(a,b)=(1,-2).

    cos90=0\cos 90^\circ = 0
    sin90=1\sin 90^\circ = 1
    (xy)=(0110)(311(2))+(12)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 3-1 \\ 1-(-2) \end{pmatrix} + \begin{pmatrix} 1 \\ -2 \end{pmatrix}
    =(0110)(23)+(12)=(32)+(12)=(20)= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} + \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix} + \begin{pmatrix} 1 \\ -2 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \end{pmatrix}

    Image: Q(2,0)Q'(-2,0).