Source codeVideos

Command Palette

Search for a command to run...

Geometric Transformation

Reflection Matrix over Center Point

Finding the Reflection Matrix over the Origin

Reflecting a point (x,y)(x,y) over the origin O(0,0)O(0,0) results in the image (x,y)(-x,-y). This is equivalent to a 180180^\circ rotation about the origin.

Now, we will find the 2×22 \times 2 matrix, let's say (rstu)\begin{pmatrix} r & s \\ t & u \end{pmatrix}, that represents this transformation.

We want to find r,s,t,ur, s, t, u such that:

(rstu)(xy)=(xy)\begin{pmatrix} r & s \\ t & u \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} -x \\ -y \end{pmatrix}

From matrix multiplication, we can write:

(rx+sytx+uy)=(1x+0y0x1y)\begin{pmatrix} rx + sy \\ tx + uy \end{pmatrix} = \begin{pmatrix} -1x + 0y \\ 0x - 1y \end{pmatrix}

By equating the corresponding coefficients, we get:

  • For the first row: rx+sy=1x+0yrx + sy = -1x + 0y. This means r=1r = -1 and s=0s = 0.
  • For the second row: tx+uy=0x1ytx + uy = 0x - 1y. This means t=0t = 0 and u=1u = -1.

Reflection Matrix over the Origin

The matrix associated with reflection over the origin O(0,0)O(0,0) is:

(1001)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}

Application of Reflection Matrix over the Origin

Finding the Image of Points

Determine the images of points A(1,1)A(-1,1) and B(3,2)B(3,-2) when reflected over the origin!

Alternative Solution:

Using the transformation matrix (1001)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}:

For point A(1,1)A(-1,1):

(xAyA)=(1001)(11)=((1)(1)+(0)(1)(0)(1)+(1)(1))=(11)\begin{pmatrix} x'_A \\ y'_A \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -1 \\ 1 \end{pmatrix} = \begin{pmatrix} (-1)(-1) + (0)(1) \\ (0)(-1) + (-1)(1) \end{pmatrix} = \begin{pmatrix} 1 \\ -1 \end{pmatrix}

The image of point A is A(1,1)A'(1,-1).

For point B(3,2)B(3,-2):

(xByB)=(1001)(32)=((1)(3)+(0)(2)(0)(3)+(1)(2))=(32)\begin{pmatrix} x'_B \\ y'_B \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ -2 \end{pmatrix} = \begin{pmatrix} (-1)(3) + (0)(-2) \\ (0)(3) + (-1)(-2) \end{pmatrix} = \begin{pmatrix} -3 \\ 2 \end{pmatrix}

The image of point B is B(3,2)B'(-3,2).

Reflection of Points AA and BB over the Origin
Visualization of reflecting point A(1,1)A(-1,1) to A(1,1)A'(1,-1) and B(3,2)B(3,-2) to B(3,2)B'(-3,2) over the origin O(0,0)O(0,0).

Exercises

  1. Determine the images of points A(1,7)A(1,-7) and B(7,2)B(-7,-2) when reflected over the origin!
  2. A triangle PQRPQR has vertices P(2,2)P(2,2), Q(5,2)Q(5,2), and R(3,5)R(3,5). Determine the coordinates of the image triangle PQRP'Q'R' after reflection over the origin using matrix multiplication.

Key Answers

  1. The reflection matrix over the origin is: (1001)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.

    For A(1,7)A(1,-7):

    (1001)(17)=(17)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 1 \\ -7 \end{pmatrix} = \begin{pmatrix} -1 \\ 7 \end{pmatrix}

    Image A(1,7)A'(-1,7). For B(7,2)B(-7,-2):

    (1001)(72)=(72)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -7 \\ -2 \end{pmatrix} = \begin{pmatrix} 7 \\ 2 \end{pmatrix}

    Image B(7,2)B'(7,2).

  2. Matrix of PQR vertices: (253225)\begin{pmatrix} 2 & 5 & 3 \\ 2 & 2 & 5 \end{pmatrix}.

    (1001)(253225)=(253225)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 & 5 & 3 \\ 2 & 2 & 5 \end{pmatrix} = \begin{pmatrix} -2 & -5 & -3 \\ -2 & -2 & -5 \end{pmatrix}

    Image: P(2,2)P'(-2,-2), Q(5,2)Q'(-5,-2), R(3,5)R'(-3,-5).