Source codeVideos

Command Palette

Search for a command to run...

Geometric Transformation

Reflection Matrix over Arbitrary Point

Finding the Reflection Matrix over an Arbitrary Point

The image of a point (x,y)(x,y) reflected over the point (a,b)(a,b) is (x+2a,y+2b)(-x+2a, -y+2b) or (2ax,2by)(2a-x, 2b-y).

The matrix operation associated with this transformation cannot be represented solely by a single 2×22 \times 2 multiplication matrix, as it involves addition (translation) due to the center point (a,b)(a,b) not being the origin.

However, we can represent this transformation as a combination of matrix operations:

  1. Translate the point (x,y)(x,y) so that the center of reflection (a,b)(a,b) effectively becomes the origin. This means we work with (xa,yb)(x-a, y-b).
  2. Reflect this translated point over the origin using the matrix (1001)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}.
  3. Translate the result back by adding the coordinates of the center of reflection (a,b)(a,b).

Mathematically, if (x,y)(x', y') is the image of (x,y)(x,y):

(xy)=(1001)(xayb)+(ab)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x-a \\ y-b \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}
(xy)=((xa)(yb))+(ab)=(x+ay+b)+(ab)=(x+2ay+2b)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -(x-a) \\ -(y-b) \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -x+a \\ -y+b \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} -x+2a \\ -y+2b \end{pmatrix}

This corresponds to the formula we are familiar with.

Matrix Operation for Reflection over a Point

The matrix operation associated with reflection over the point P(a,b)P(a,b) for any point (x,y)(x,y) is:

(xy)=(1001)(xy)+2(ab)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + 2 \begin{pmatrix} a \\ b \end{pmatrix}

Or, more precisely, it can be written as a combination:

(xy)=(1001)((xy)(ab))+(ab)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \left( \begin{pmatrix} x \\ y \end{pmatrix} - \begin{pmatrix} a \\ b \end{pmatrix} \right) + \begin{pmatrix} a \\ b \end{pmatrix}

The form presented as Property 4.11 in the book ((1001)(xy)+2(ab)\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + 2 \begin{pmatrix} a \\ b \end{pmatrix}) is a simplification of (x+2ay+2b)\begin{pmatrix} -x+2a \\ -y+2b \end{pmatrix}.

Finding the Image of a Point

Determine the image of point (2,3)(2,3) by reflection over point (1,1)(1,1).

Alternative Solution:

Point (x,y)=(2,3)(x,y) = (2,3). Center (a,b)=(1,1)(a,b) = (1,1).

(xy)=(1001)(23)+2(11)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 2 \\ 3 \end{pmatrix} + 2 \begin{pmatrix} 1 \\ 1 \end{pmatrix}
=((1)(2)+(0)(3)(0)(2)+(1)(3))+(22)= \begin{pmatrix} (-1)(2) + (0)(3) \\ (0)(2) + (-1)(3) \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \end{pmatrix}
=(23)+(22)=(2+23+2)=(01)= \begin{pmatrix} -2 \\ -3 \end{pmatrix} + \begin{pmatrix} 2 \\ 2 \end{pmatrix} = \begin{pmatrix} -2+2 \\ -3+2 \end{pmatrix} = \begin{pmatrix} 0 \\ -1 \end{pmatrix}

Visualization:

Reflection of Point Q(2,3)Q(2,3) over P(1,1)P(1,1)
Point Q(2,3)Q(2,3) reflected over P(1,1)P(1,1) becomes Q(0,1)Q'(0,-1).

Exercises

  1. Determine the image of point (3,1)(3,1) by reflection over point (2,1)(-2,-1).
  2. A line passes through points A(1,2)A(1,2) and B(3,4)B(3,4). Determine the equation of the image line after reflection over point C(0,1)C(0,1).

Key Answers

  1. Point (x,y)=(3,1)(x,y) = (3,1). Center (a,b)=(2,1)(a,b) = (-2,-1).

    Using the formula x=2axx' = 2a-x and y=2byy' = 2b-y:

    x=2(2)3=43=7x' = 2(-2) - 3 = -4 - 3 = -7
    y=2(1)1=21=3y' = 2(-1) - 1 = -2 - 1 = -3

    Its image is (7,3)(-7,-3). Or using matrix operations:

    (xy)=(1001)(31)+2(21)=(31)+(42)=(73)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} + 2 \begin{pmatrix} -2 \\ -1 \end{pmatrix} = \begin{pmatrix} -3 \\ -1 \end{pmatrix} + \begin{pmatrix} -4 \\ -2 \end{pmatrix} = \begin{pmatrix} -7 \\ -3 \end{pmatrix}
  2. Center of reflection C(0,1)C(0,1). (a=0,b=1a=0, b=1)

    Image of point A(1,2)A(1,2):

    xA=2(0)1=1x'_A = 2(0)-1 = -1
    yA=2(1)2=0y'_A = 2(1)-2 = 0

    So A(1,0)A'(-1,0).

    Image of point B(3,4)B(3,4):

    xB=2(0)3=3x'_B = 2(0)-3 = -3
    yB=2(1)4=2y'_B = 2(1)-4 = -2

    So B(3,2)B'(-3,-2).

    The image line passes through A(1,0)A'(-1,0) and B(3,2)B'(-3,-2).

    Gradient m=203(1)=22=1m' = \frac{-2 - 0}{-3 - (-1)} = \frac{-2}{-2} = 1.

    Equation of the line:

    yyA=m(xxA)y - y'_A = m'(x - x'_A)
    y0=1(x(1))y - 0 = 1(x - (-1))
    y=x+1y = x + 1

    or

    xy+1=0x - y + 1 = 0