Command Palette

Search for a command to run...

Linear Methods of AI

Orthogonal and Unitary Matrices

Getting to Know Orthogonal and Unitary Matrices

Orthogonal and unitary matrices are very special types of matrices. Imagine them as "clean" transformations that don't change distances and angles in space, only rotating or reflecting objects.

The difference is simple. Orthogonal matrices work with real numbers, while unitary matrices work with complex numbers. Both have the same properties, just different versions.

Mathematical Definitions

Orthogonal Matrices

A square real matrix ARn×nA \in \mathbb{R}^{n \times n} is called orthogonal if:

A1=ATA^{-1} = A^T

This means, to get the inverse of this matrix, we just transpose it. Very practical, right?

This is equivalent to:

ATA=AAT=IA^T A = A A^T = I

Unitary Matrices

A square complex matrix ACn×nA \in \mathbb{C}^{n \times n} is called unitary if:

A1=AHA^{-1} = A^H

Here AHA^H is the conjugate transpose of AA. The concept is similar, just for complex numbers.

This is also equivalent to:

AHA=AAH=IA^H A = A A^H = I

Real orthogonal matrices are actually a special case of unitary matrices, since Rn×nCn×n\mathbb{R}^{n \times n} \subset \mathbb{C}^{n \times n}.

Interesting Determinant Properties

What's interesting about orthogonal and unitary matrices is that their determinants always have absolute value 1. Why is this?

For a unitary matrix AA, we have AHA=IA^H A = I. If we calculate its determinant:

1=detI=det(AHA)=detAHdetA=detAdetA=detA21 = \det I = \det(A^H A) = \det A^H \cdot \det A = \overline{\det A} \cdot \det A = |\det A|^2

So detA=1|\det A| = 1. For orthogonal matrices, the proof is the same, just using ATA=IA^T A = I.

Special Eigenvalues

Eigenvalues of orthogonal and unitary matrices also have special properties. Every eigenvalue λ\lambda always satisfies:

λ=1|\lambda| = 1

Why is this? Suppose Av=λvA \cdot v = \lambda \cdot v for an eigenvector v0v \neq 0. For the complex case, we can calculate:

vHv=vHAHAv=(Av)H(Av)=(λv)H(λv)v^H v = v^H A^H A v = (A \cdot v)^H (A \cdot v) = (\lambda \cdot v)^H (\lambda \cdot v)
=λλvHv=λ2vHv= \overline{\lambda} \cdot \lambda \cdot v^H v = |\lambda|^2 \cdot v^H v

Since vHv0v^H v \neq 0, then λ2=1|\lambda|^2 = 1, so λ=1|\lambda| = 1.

Forms of Eigenvalues

For real orthogonal matrices, the eigenvalues can be 1 or -1 if real. But if complex, they can be written as:

λ=exp(iφ)=cosφ+isinφ\lambda = \exp(i\varphi) = \cos \varphi + i \sin \varphi

This means complex eigenvalues lie on the unit circle in the complex plane.

Concrete Example of Rotation Matrix

Let's look at a familiar example, the rotation matrix:

A=(cosαsinαsinαcosα)A = \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}

We can check that this is an orthogonal matrix:

ATA=(cosαsinαsinαcosα)(cosαsinαsinαcosα)A^T A = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{pmatrix}
=(cos2α+sin2αcosα(sinα)+sinαcosα(sinα)cosα+cosαsinα(sinα)(sinα)+cos2α)=(1001)= \begin{pmatrix} \cos^2 \alpha + \sin^2 \alpha & \cos \alpha(-\sin \alpha) + \sin \alpha \cos \alpha \\ (-\sin \alpha) \cos \alpha + \cos \alpha \sin \alpha & (-\sin \alpha)(-\sin \alpha) + \cos^2 \alpha \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}

Finding Eigenvalues

The characteristic polynomial is:

χA(t)=det(cosαtsinαsinαcosαt)\chi_A(t) = \det \begin{pmatrix} \cos \alpha - t & -\sin \alpha \\ \sin \alpha & \cos \alpha - t \end{pmatrix}
=(cosαt)2+sin2α=cos2α+sin2α2tcosα+t2= (\cos \alpha - t)^2 + \sin^2 \alpha = \cos^2 \alpha + \sin^2 \alpha - 2t \cos \alpha + t^2
=12tcosα+t2= 1 - 2t \cos \alpha + t^2

The eigenvalues are:

λ1,2=cosα±cos2α1=cosα±sin2α=cosα±isinα\lambda_{1,2} = \cos \alpha \pm \sqrt{\cos^2 \alpha - 1} = \cos \alpha \pm \sqrt{-\sin^2 \alpha} = \cos \alpha \pm i \sin \alpha

The result is λ1,2=e±iα\lambda_{1,2} = e^{\pm i\alpha}.

The transformation R2R2:xAx\mathbb{R}^2 \to \mathbb{R}^2 : x \mapsto A \cdot x represents a rotation by angle α\alpha. For α0\alpha \neq 0 and απ\alpha \neq \pi, this matrix has no real eigenvalues, but has two complex eigenvalues.