Source codeVideos

Command Palette

Search for a command to run...

Geometric Transformation

Translation Matrix

Matrix Operation for Translation

Translation or shifting a point (x,y)(x,y) by a vector (ab)\begin{pmatrix} a \\ b \end{pmatrix} results in the image (x+a,y+b)(x+a, y+b).

This operation can be written in the form of vector addition (column matrix):

(xy)=(xy)+(ab)=(x+ay+b)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix} = \begin{pmatrix} x+a \\ y+b \end{pmatrix}

This is different from transformations like rotation or reflection across an axis/line, which can be represented by 2×22 \times 2 matrix multiplication. Pure translation is a vector addition operation.

However, if we want to combine translation with other linear transformations using matrix multiplication, we often use homogeneous coordinates. With homogeneous coordinates, a point (x,y)(x,y) is represented as (xy1)\begin{pmatrix} x \\ y \\ 1 \end{pmatrix}, and the transformation matrix becomes 3×33 \times 3. For translation by (ab)\begin{pmatrix} a \\ b \end{pmatrix}, the matrix is:

T(a,b)=(10a01b001)T_{(a,b)} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix}

Thus:

(xy1)=(10a01b001)(xy1)=(x+ay+b1)\begin{pmatrix} x' \\ y' \\ 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 & a \\ 0 & 1 & b \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ 1 \end{pmatrix} = \begin{pmatrix} x+a \\ y+b \\ 1 \end{pmatrix}

Matrix Operation

The matrix operation associated with translation by vector (ab)\begin{pmatrix} a \\ b \end{pmatrix} for point (x,y)(x,y) is:

(xy)=(xy)+(ab)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}

Finding the Image of a Point with Matrix Operation

Determine the image of point (2,3)(-2,3) translated by the vector (34)\begin{pmatrix} -3 \\ 4 \end{pmatrix} using matrix operation.

Alternative Solution:

Based on the matrix operation, the image can be determined by:

(xy)=(23)+(34)=(2+(3)3+4)=(57)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} -2 \\ 3 \end{pmatrix} + \begin{pmatrix} -3 \\ 4 \end{pmatrix} = \begin{pmatrix} -2 + (-3) \\ 3 + 4 \end{pmatrix} = \begin{pmatrix} -5 \\ 7 \end{pmatrix}

Its image is (5,7)(-5,7).

Translation of Point P(2,3)P(-2,3) by Vector (34)\begin{pmatrix} -3 \\ 4 \end{pmatrix}
Visualization of translating point P(2,3)P(-2,3) to P(5,7)P'(-5,7) by a translation vector.

Exercises

  1. Determine the image of point (4,5)(4,-5) translated by the vector (54)\begin{pmatrix} -5 \\ 4 \end{pmatrix} using matrix operation.
  2. A triangle KLMKLM has vertices K(1,0)K(1,0), L(4,2)L(4,2), and M(2,5)M(2,5). This triangle is translated by vector T=(21)T = \begin{pmatrix} -2 \\ 1 \end{pmatrix}. Determine the coordinates of the image triangle KLMK'L'M'.

Key Answers

  1. Point (4,5)(4,-5), translation vector (54)\begin{pmatrix} -5 \\ 4 \end{pmatrix}.

    (xy)=(45)+(54)=(455+4)=(11)\begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 4 \\ -5 \end{pmatrix} + \begin{pmatrix} -5 \\ 4 \end{pmatrix} = \begin{pmatrix} 4-5 \\ -5+4 \end{pmatrix} = \begin{pmatrix} -1 \\ -1 \end{pmatrix}

    Image: (1,1)(-1,-1).

  2. Translation vector T=(21)T = \begin{pmatrix} -2 \\ 1 \end{pmatrix}.

    • For K(1,0)K(1,0): (xKyK)=(10)+(21)=(11)\begin{pmatrix} x'_K \\ y'_K \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} -1 \\ 1 \end{pmatrix}. So K(1,1)K'(-1,1).
    • For L(4,2)L(4,2): (xLyL)=(42)+(21)=(23)\begin{pmatrix} x'_L \\ y'_L \end{pmatrix} = \begin{pmatrix} 4 \\ 2 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 3 \end{pmatrix}. So L(2,3)L'(2,3).
    • For M(2,5)M(2,5): (xMyM)=(25)+(21)=(06)\begin{pmatrix} x'_M \\ y'_M \end{pmatrix} = \begin{pmatrix} 2 \\ 5 \end{pmatrix} + \begin{pmatrix} -2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 \\ 6 \end{pmatrix}. So M(0,6)M'(0,6).

    Image coordinates: K(1,1)K'(-1,1), L(2,3)L'(2,3), M(0,6)M'(0,6).